InΒ [Β ]:
 
InΒ [Β ]:
 
InΒ [1]:
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns
import string
import os
from collections import defaultdict

# ==================== HELPER FUNCTIONS ====================
def generate_two_letter_labels(n):
    labels = []
    for i in range(n):
        first = i // 26
        second = i % 26
        label = string.ascii_uppercase[first] + string.ascii_uppercase[second]
        labels.append(label)
    return labels

# ==================== KRUSKAL ALGORITHM ====================
class UnionFind:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [0] * n
    
    def find(self, x):
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
    
    def union(self, x, y):
        px, py = self.find(x), self.find(y)
        if px == py:
            return False
        if self.rank[px] < self.rank[py]:
            px, py = py, px
        self.parent[py] = px
        if self.rank[px] == self.rank[py]:
            self.rank[px] += 1
        return True

def kruskal_mst(dist_matrix):
    n = len(dist_matrix)
    edges = []
    for i in range(n):
        for j in range(i+1, n):
            edges.append((dist_matrix[i][j], i, j))
    edges.sort()
    
    uf = UnionFind(n)
    mst_edges = []
    total_weight = 0
    
    for weight, u, v in edges:
        if uf.union(u, v):
            mst_edges.append((u, v))
            total_weight += weight
            if len(mst_edges) == n - 1:
                break
    
    return total_weight, mst_edges

# ==================== ACO BASE CLASS ====================
class ACO:
    def __init__(self, dist_matrix, n_ants=10, n_iterations=100, alpha=1, beta=2, rho=0.5):
        self.dist_matrix = dist_matrix
        self.n_nodes = len(dist_matrix)
        self.n_ants = n_ants
        self.n_iterations = n_iterations
        self.alpha = alpha
        self.beta = beta
        self.rho = rho
        self.pheromone = np.ones((self.n_nodes, self.n_nodes))
        
    def _select_next_node(self, current, unvisited, max_degree=None, degrees=None):
        pheromone = self.pheromone[current, unvisited]
        heuristic = 1.0 / (self.dist_matrix[current, unvisited] + 1e-10)
        
        if max_degree is not None and degrees is not None:
            valid_mask = np.array([degrees[node] < max_degree for node in unvisited])
            if not np.any(valid_mask):
                return None
            pheromone = pheromone * valid_mask
            heuristic = heuristic * valid_mask
        
        probabilities = (pheromone ** self.alpha) * (heuristic ** self.beta)
        prob_sum = probabilities.sum()
        if prob_sum > 0:
            probabilities = probabilities / prob_sum
        else:
            return None
        
        return np.random.choice(unvisited, p=probabilities)
    
    def _update_pheromone(self, solutions, costs):
        self.pheromone *= (1 - self.rho)
        for solution, cost in zip(solutions, costs):
            for i, j in solution:
                self.pheromone[i][j] += 1.0 / cost
                self.pheromone[j][i] += 1.0 / cost

# ==================== ACO TSP PATH (FAIR - NO CYCLE) ====================
class ACO_TSP_Path(ACO):
    """TSP Hamiltonian Path - TIDAK kembali ke awal (n-1 edges) - FAIR"""
    
    def construct_solution(self, max_degree=None):
        start = np.random.randint(self.n_nodes)
        tour = [start]
        unvisited = list(range(self.n_nodes))
        unvisited.remove(start)
        
        degrees = defaultdict(int) if max_degree else None
        if max_degree:
            degrees[start] = 0
        
        while unvisited:
            current = tour[-1]
            next_node = self._select_next_node(current, unvisited, max_degree, degrees)
            
            if next_node is None:
                return None, float('inf')
            
            tour.append(next_node)
            unvisited.remove(next_node)
            
            if max_degree:
                degrees[current] += 1
                degrees[next_node] += 1
        
        # TIDAK kembali ke awal (PATH - FAIR COMPARISON)
        edges = [(tour[i], tour[i+1]) for i in range(len(tour)-1)]
        cost = sum(self.dist_matrix[i][j] for i, j in edges)
        
        return edges, cost
    
    def run(self, max_degree=None):
        best_cost = float('inf')
        best_solution = None
        
        for iteration in range(self.n_iterations):
            solutions = []
            costs = []
            
            for ant in range(self.n_ants):
                solution, cost = self.construct_solution(max_degree)
                if solution is not None:
                    solutions.append(solution)
                    costs.append(cost)
                    if cost < best_cost:
                        best_cost = cost
                        best_solution = solution
            
            if solutions:
                self._update_pheromone(solutions, costs)
        
        return best_cost, best_solution

# ==================== ACO MST ====================
class ACO_MST(ACO):
    def construct_solution(self, max_degree=None):
        start = np.random.randint(self.n_nodes)
        in_tree = {start}
        edges = []
        degrees = defaultdict(int) if max_degree else None
        
        while len(in_tree) < self.n_nodes:
            candidates = []
            for node in in_tree:
                if max_degree and degrees[node] >= max_degree:
                    continue
                for next_node in range(self.n_nodes):
                    if next_node not in in_tree:
                        if max_degree is None or degrees[next_node] < max_degree:
                            candidates.append((node, next_node))
            
            if not candidates:
                return None, float('inf')
            
            probs = []
            for i, j in candidates:
                pheromone = self.pheromone[i][j]
                heuristic = 1.0 / (self.dist_matrix[i][j] + 1e-10)
                prob = (pheromone ** self.alpha) * (heuristic ** self.beta)
                probs.append(prob)
            
            probs = np.array(probs)
            probs = probs / probs.sum()
            
            selected_idx = np.random.choice(len(candidates), p=probs)
            selected_edge = candidates[selected_idx]
            
            edges.append(selected_edge)
            in_tree.add(selected_edge[1])
            
            if max_degree:
                degrees[selected_edge[0]] += 1
                degrees[selected_edge[1]] += 1
        
        cost = sum(self.dist_matrix[i][j] for i, j in edges)
        return edges, cost
    
    def run(self, max_degree=None):
        best_cost = float('inf')
        best_solution = None
        
        for iteration in range(self.n_iterations):
            solutions = []
            costs = []
            
            for ant in range(self.n_ants):
                solution, cost = self.construct_solution(max_degree)
                if solution is not None:
                    solutions.append(solution)
                    costs.append(cost)
                    if cost < best_cost:
                        best_cost = cost
                        best_solution = solution
            
            if solutions:
                self._update_pheromone(solutions, costs)
        
        return best_cost, best_solution

# ==================== VISUALIZATION ====================
def visualize_solution(dist_matrix, edges, node_labels, title, save_path=None):
    """Visualize graph solution"""
    G = nx.Graph()
    
    # Add all nodes
    for i, label in enumerate(node_labels):
        G.add_node(label)
    
    # Add solution edges
    for i, j in edges:
        u = node_labels[i]
        v = node_labels[j]
        weight = dist_matrix[i][j]
        G.add_edge(u, v, weight=weight)
    
    plt.figure(figsize=(12, 10))
    pos = nx.spring_layout(G, seed=42, k=2)
    
    # Draw nodes
    nx.draw_networkx_nodes(G, pos, node_color='lightblue', 
                           node_size=800, alpha=0.9)
    
    # Draw edges
    nx.draw_networkx_edges(G, pos, width=3, alpha=0.6, edge_color='darkblue')
    
    # Draw labels
    nx.draw_networkx_labels(G, pos, font_size=10, font_weight='bold')
    
    # Draw edge weights
    edge_labels = {(u, v): f'{data["weight"]:.0f}' for u, v, data in G.edges(data=True)}
    nx.draw_networkx_edge_labels(G, pos, edge_labels, font_size=8)
    
    plt.title(title, fontsize=16, fontweight='bold', pad=20)
    plt.axis('off')
    plt.tight_layout()
    
    if save_path:
        plt.savefig(save_path, dpi=150, bbox_inches='tight')
    plt.show()

# ==================== LOAD DATASET ====================
def load_datasets_from_csv(num_vertices=10, datasetKolomMax=31, folder_name='results'):
    if not os.path.exists(folder_name):
        os.makedirs(folder_name)
    
    NF = f'dataset/dataset{num_vertices}.csv'
    
    try:
        df = pd.read_csv(NF)
        expected_edges = num_vertices * (num_vertices - 1) // 2
        
        datasets = []
        
        for ii in range(1, datasetKolomMax):
            COL = f'NamaFile{ii}'
            
            if COL not in df.columns:
                break
            
            weights = df[COL].tolist()
            
            if len(weights) < expected_edges:
                break
            
            # Create complete graph
            G = nx.complete_graph(num_vertices)
            
            for i, (u, v) in enumerate(G.edges()):
                G[u][v]['weight'] = weights[i]
            
            # Generate node labels
            if num_vertices <= 20:
                node_labels = [letter for letter in string.ascii_uppercase[:num_vertices]]
            else:
                node_labels = generate_two_letter_labels(num_vertices)
            
            G = nx.relabel_nodes(G, {i: node_labels[i] for i in range(num_vertices)})
            
            # Convert to distance matrix
            nodes = sorted(G.nodes())
            n = len(nodes)
            node_to_idx = {node: idx for idx, node in enumerate(nodes)}
            dist_matrix = np.zeros((n, n))
            
            for u, v, data in G.edges(data=True):
                i = node_to_idx[u]
                j = node_to_idx[v]
                weight = data['weight']
                dist_matrix[i][j] = weight
                dist_matrix[j][i] = weight
            
            datasets.append((dist_matrix, node_labels, G))
        
        return datasets
    
    except FileNotFoundError:
        print(f"Creating sample dataset...")
        os.makedirs('dataset', exist_ok=True)
        
        n_edges = expected_edges
        data = {f'NamaFile{i}': np.random.randint(10, 100, size=n_edges) 
                for i in range(1, min(datasetKolomMax, 11))}
        df_new = pd.DataFrame(data)
        df_new.insert(0, 'Nomor', range(1, n_edges + 1))
        df_new.to_csv(NF, index=False)
        
        return load_datasets_from_csv(num_vertices, datasetKolomMax, folder_name)

# ==================== MAIN EXECUTION ====================
if __name__ == "__main__":
    print("="*80)
    print("FAIR ACO COMPARISON: TSP PATH vs MST (SAME n-1 EDGES)")
    print("="*80)
    
    # Configuration
    num_vertices = 90
    datasetKolomMax = 31
    folder_name = 'results'
    
    # Load datasets
    print("\nLoading datasets from CSV...")
    datasets = load_datasets_from_csv(num_vertices, datasetKolomMax, folder_name)
    
    if not datasets:
        print("Error loading datasets!")
        exit(1)
    
    print(f"Loaded {len(datasets)} datasets with {num_vertices} vertices each")
    
    # Initialize results
    results = {
        'Dataset': [],
        'Kruskal': [],
        'ACO_TSP_Path_Same': [],
        'ACO_TSP_Path_Tuned': [],
        'ACO_MST_Same': [],
        'ACO_MST_Tuned': [],
        'ACO_TSP_Path_Deg3_Same': [],
        'ACO_TSP_Path_Deg3_Tuned': [],
        'ACO_MST_Deg3_Same': [],
        'ACO_MST_Deg3_Tuned': []
    }
    
    # Store first dataset solutions for visualization
    first_solutions = {}
    
    print("\n" + "="*80)
    print("RUNNING EXPERIMENTS...")
    print("="*80)
    
    for idx, (dist_matrix, node_labels, G_complete) in enumerate(datasets):
        print(f"\nDataset {idx+1}:")
        results['Dataset'].append(f"D{idx+1}")
        
        # Kruskal
        kruskal_cost, kruskal_edges = kruskal_mst(dist_matrix)
        results['Kruskal'].append(kruskal_cost)
        print(f"  Kruskal MST: {kruskal_cost:.2f} ({len(kruskal_edges)} edges)")
        
        if idx == 0:
            first_solutions['kruskal'] = (kruskal_edges, kruskal_cost)
        
        # ACO TSP Path Same (β=2, ρ=0.5)
        aco_tsp_same = ACO_TSP_Path(dist_matrix, beta=2, rho=0.5)
        cost, edges = aco_tsp_same.run()
        results['ACO_TSP_Path_Same'].append(cost)
        print(f"  ACO TSP Path Same: {cost:.2f} ({len(edges) if edges else 0} edges)")
        
        if idx == 0 and edges:
            first_solutions['tsp_same'] = (edges, cost)
        
        # ACO TSP Path Tuned (β=2, ρ=0.3)
        aco_tsp_tuned = ACO_TSP_Path(dist_matrix, beta=2, rho=0.3)
        cost, edges = aco_tsp_tuned.run()
        results['ACO_TSP_Path_Tuned'].append(cost)
        print(f"  ACO TSP Path Tuned: {cost:.2f} ({len(edges) if edges else 0} edges)")
        
        # ACO MST Same
        aco_mst_same = ACO_MST(dist_matrix, beta=2, rho=0.5)
        cost, edges = aco_mst_same.run()
        results['ACO_MST_Same'].append(cost)
        print(f"  ACO MST Same: {cost:.2f} ({len(edges) if edges else 0} edges)")
        
        if idx == 0 and edges:
            first_solutions['mst_same'] = (edges, cost)
        
        # ACO MST Tuned
        aco_mst_tuned = ACO_MST(dist_matrix, beta=1, rho=0.1)
        cost, edges = aco_mst_tuned.run()
        results['ACO_MST_Tuned'].append(cost)
        print(f"  ACO MST Tuned: {cost:.2f} ({len(edges) if edges else 0} edges)")
        
        # With Degree=3 constraints
        for name, aco_class, params in [
            ('TSP_Path_Deg3_Same', ACO_TSP_Path, {'beta': 2, 'rho': 0.5}),
            ('TSP_Path_Deg3_Tuned', ACO_TSP_Path, {'beta': 2, 'rho': 0.3}),
            ('MST_Deg3_Same', ACO_MST, {'beta': 2, 'rho': 0.5}),
            ('MST_Deg3_Tuned', ACO_MST, {'beta': 1, 'rho': 0.1})
        ]:
            aco = aco_class(dist_matrix, **params)
            cost, edges = aco.run(max_degree=3)
            
            if cost == float('inf'):
                for _ in range(5):
                    cost, edges = aco.run(max_degree=3)
                    if cost != float('inf'):
                        break
            
            results[f'ACO_{name}'].append(cost if cost != float('inf') else None)
            edge_count = len(edges) if edges and cost != float('inf') else 0
            print(f"  ACO {name}: {cost:.2f} ({edge_count} edges)" if cost != float('inf') else f"  ACO {name}: No solution")
    
    # Create DataFrame
    df = pd.DataFrame(results)
    
    print("\n" + "="*80)
    print("RESULTS TABLE")
    print("="*80)
    print(df.to_string(index=False))
    
    # Summary statistics
    print("\n" + "="*80)
    print("SUMMARY STATISTICS")
    print("="*80)
    
    def calc_stats(values):
        clean_values = [v for v in values if v is not None and v != float('inf')]
        if not clean_values:
            return None, None, None, None
        return (np.mean(clean_values), np.std(clean_values), min(clean_values), max(clean_values))
    
    summary_data = []
    for col in df.columns:
        if col != 'Dataset':
            mean, std, min_val, max_val = calc_stats(df[col])
            summary_data.append({
                'Algorithm': col,
                'Mean': mean,
                'Std': std,
                'Min': min_val,
                'Max': max_val
            })
    
    summary = pd.DataFrame(summary_data)
    print(summary.to_string(index=False))
    
    # FAIR COMPARISON ANALYSIS
    print("\n" + "="*80)
    print("βœ… FAIR COMPARISON ANALYSIS (n-1 edges)")
    print("="*80)
    
    kruskal_mean = summary.iloc[0]['Mean']
    tsp_path_same_mean = summary.iloc[1]['Mean']
    mst_same_mean = summary.iloc[3]['Mean']
    
    print(f"\nEdge Count: n-1 = {num_vertices - 1} edges")
    print(f"\n1. Kruskal (Optimal): {kruskal_mean:.2f}")
    print(f"2. ACO TSP Path:      {tsp_path_same_mean:.2f}")
    print(f"3. ACO MST:           {mst_same_mean:.2f}")
    
    tsp_gap = ((tsp_path_same_mean / kruskal_mean) - 1) * 100
    mst_gap = ((mst_same_mean / kruskal_mean) - 1) * 100
    
    print(f"\nGap from Optimal:")
    print(f"  TSP Path vs Kruskal: {tsp_gap:+.2f}%")
    print(f"  MST vs Kruskal:      {mst_gap:+.2f}%")
    
    print(f"\nβœ… Fair comparison karena:")
    print(f"  β€’ Same edge count: {num_vertices - 1} edges")
    print(f"  β€’ No cycle: TSP Path & MST both are paths/trees")
    print(f"  β€’ Apple-to-apple: Both connect all nodes without cycle")
    
    # VISUALIZE FIRST DATASET
    print("\n" + "="*80)
    print("VISUALIZING FIRST DATASET RESULTS")
    print("="*80)
    
    dist_matrix_1, node_labels_1, G_complete_1 = datasets[0]
    
    # Visualize Complete Graph
    print("\n1. Visualizing Complete Graph...")
    plt.figure(figsize=(12, 10))
    pos = nx.spring_layout(G_complete_1, seed=42, k=2)
    nx.draw_networkx_nodes(G_complete_1, pos, node_color='lightgray', node_size=800, alpha=0.6)
    nx.draw_networkx_edges(G_complete_1, pos, width=1, alpha=0.2, edge_color='gray')
    nx.draw_networkx_labels(G_complete_1, pos, font_size=10, font_weight='bold')
    edge_labels = {(u, v): f'{data["weight"]:.0f}' for u, v, data in G_complete_1.edges(data=True) if data['weight'] < 50}
    nx.draw_networkx_edge_labels(G_complete_1, pos, edge_labels, font_size=7)
    plt.title('Complete Graph - Dataset 1 (All Edges)', fontsize=16, fontweight='bold', pad=20)
    plt.axis('off')
    plt.tight_layout()
    plt.savefig(f'{folder_name}/complete_graph.png', dpi=150, bbox_inches='tight')
    plt.show()
    
    # Visualize Kruskal MST
    if 'kruskal' in first_solutions:
        print("\n2. Visualizing Kruskal MST...")
        edges, cost = first_solutions['kruskal']
        visualize_solution(dist_matrix_1, edges, node_labels_1, 
                         f'Kruskal MST - Dataset 1 (Weight={cost:.0f}, {len(edges)} edges)',
                         f'{folder_name}/kruskal_mst.png')
    
    # Visualize ACO TSP Path
    if 'tsp_same' in first_solutions:
        print("\n3. Visualizing ACO TSP Path...")
        edges, cost = first_solutions['tsp_same']
        visualize_solution(dist_matrix_1, edges, node_labels_1,
                         f'ACO TSP Path - Dataset 1 (Weight={cost:.0f}, {len(edges)} edges)',
                         f'{folder_name}/aco_tsp_path.png')
    
    # Visualize ACO MST
    if 'mst_same' in first_solutions:
        print("\n4. Visualizing ACO MST...")
        edges, cost = first_solutions['mst_same']
        visualize_solution(dist_matrix_1, edges, node_labels_1,
                         f'ACO MST - Dataset 1 (Weight={cost:.0f}, {len(edges)} edges)',
                         f'{folder_name}/aco_mst.png')
    
    # Comparison Plots
    print("\n5. Creating comparison plots...")
    fig, axes = plt.subplots(2, 2, figsize=(16, 12))
    
    # Plot 1: Fair Comparison (n-1 edges)
    ax1 = axes[0, 0]
    fair_data = [
        [v for v in df['Kruskal'].values if v is not None],
        [v for v in df['ACO_TSP_Path_Same'].values if v is not None],
        [v for v in df['ACO_MST_Same'].values if v is not None]
    ]
    ax1.boxplot(fair_data, labels=['Kruskal\n(Optimal)', 'TSP Path\n(Same)', 'MST\n(Same)'])
    ax1.set_title('βœ… Fair Comparison (All n-1 edges)', fontsize=14, fontweight='bold')
    ax1.set_ylabel('Total Weight', fontsize=12)
    ax1.grid(True, alpha=0.3)
    
    # Plot 2: With Degree Constraint
    ax2 = axes[0, 1]
    deg_data = [
        [v for v in df['ACO_TSP_Path_Deg3_Same'].values if v is not None and v != float('inf')],
        [v for v in df['ACO_MST_Deg3_Same'].values if v is not None and v != float('inf')]
    ]
    if all(len(d) > 0 for d in deg_data):
        ax2.boxplot(deg_data, labels=['TSP Path\nDeg3', 'MST\nDeg3'])
        ax2.set_title('Degree Constraint = 3', fontsize=14, fontweight='bold')
        ax2.set_ylabel('Total Weight', fontsize=12)
        ax2.grid(True, alpha=0.3)
    
    # Plot 3: Bar comparison
    ax3 = axes[1, 0]
    means = [m if m is not None else 0 for m in summary['Mean'].values[:5]]
    colors = ['green', 'blue', 'lightblue', 'purple', 'orchid']
    bars = ax3.bar(range(len(means)), means, color=colors, alpha=0.7)
    ax3.set_xticks(range(len(means)))
    ax3.set_xticklabels(['Kruskal', 'TSP Path\nSame', 'TSP Path\nTuned', 'MST\nSame', 'MST\nTuned'], fontsize=9)
    ax3.set_title('Mean Performance (n-1 edges)', fontsize=14, fontweight='bold')
    ax3.set_ylabel('Mean Weight', fontsize=12)
    ax3.grid(True, alpha=0.3, axis='y')
    
    for bar, val in zip(bars, means):
        if val > 0:
            ax3.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 5,
                    f'{val:.0f}', ha='center', va='bottom', fontsize=9)
    
    # Plot 4: Edge count verification
    ax4 = axes[1, 1]
    edge_counts = [num_vertices - 1, num_vertices - 1, num_vertices - 1]
    labels_edge = ['Kruskal', 'TSP Path', 'MST']
    ax4.bar(labels_edge, edge_counts, color=['green', 'blue', 'purple'], alpha=0.7)
    ax4.set_title('βœ… Edge Count Verification (Fair!)', fontsize=14, fontweight='bold')
    ax4.set_ylabel('Number of Edges', fontsize=12)
    ax4.axhline(y=num_vertices - 1, color='r', linestyle='--', label=f'n-1 = {num_vertices - 1}')
    ax4.legend()
    ax4.grid(True, alpha=0.3, axis='y')
    
    for i, (label, count) in enumerate(zip(labels_edge, edge_counts)):
        ax4.text(i, count + 0.1, str(count), ha='center', va='bottom', fontsize=12, fontweight='bold')
    
    plt.tight_layout()
    plt.savefig(f'{folder_name}/fair_comparison.png', dpi=300, bbox_inches='tight')
    plt.show()
    
    # Save results
    df.to_csv(f'{folder_name}/fair_aco_results.csv', index=False)
    
    print("\n" + "="*80)
    print("βœ… COMPLETED!")
    print("="*80)
    print(f"\nFiles saved to '{folder_name}/' folder:")
    print("  πŸ“Š fair_aco_results.csv - Numerical results")
    print("  πŸ“ˆ fair_comparison.png - Comparison plots")
    print("  🌐 complete_graph.png - Full graph visualization")
    print("  🌳 kruskal_mst.png - Kruskal MST result")
    print("  πŸ›€οΈ  aco_tsp_path.png - ACO TSP Path result")
    print("  🌲 aco_mst.png - ACO MST result")
    
    print("\nπŸ’‘ KEY FINDINGS:")
    print(f"  β€’ All methods use n-1 = {num_vertices - 1} edges (FAIR!)")
    print(f"  β€’ TSP Path: NO cycle (like MST)")
    print(f"  β€’ Kruskal: {kruskal_mean:.2f} (optimal)")
    print(f"  β€’ ACO TSP Path: {tsp_path_same_mean:.2f} ({tsp_gap:+.2f}%)")
    print(f"  β€’ ACO MST: {mst_same_mean:.2f} ({mst_gap:+.2f}%)")
================================================================================
FAIR ACO COMPARISON: TSP PATH vs MST (SAME n-1 EDGES)
================================================================================

Loading datasets from CSV...
Loaded 30 datasets with 90 vertices each

================================================================================
RUNNING EXPERIMENTS...
================================================================================

Dataset 1:
  Kruskal MST: 1402.00 (89 edges)
  ACO TSP Path Same: 2897.00 (89 edges)
  ACO TSP Path Tuned: 2836.00 (89 edges)
  ACO MST Same: 1413.00 (89 edges)
  ACO MST Tuned: 1563.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2635.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2927.00 (89 edges)
  ACO MST_Deg3_Same: 1547.00 (89 edges)
  ACO MST_Deg3_Tuned: 1711.00 (89 edges)

Dataset 2:
  Kruskal MST: 1224.00 (89 edges)
  ACO TSP Path Same: 2433.00 (89 edges)
  ACO TSP Path Tuned: 2501.00 (89 edges)
  ACO MST Same: 1226.00 (89 edges)
  ACO MST Tuned: 1341.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2506.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2494.00 (89 edges)
  ACO MST_Deg3_Same: 1345.00 (89 edges)
  ACO MST_Deg3_Tuned: 1451.00 (89 edges)

Dataset 3:
  Kruskal MST: 1397.00 (89 edges)
  ACO TSP Path Same: 2727.00 (89 edges)
  ACO TSP Path Tuned: 2691.00 (89 edges)
  ACO MST Same: 1405.00 (89 edges)
  ACO MST Tuned: 1627.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2715.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2789.00 (89 edges)
  ACO MST_Deg3_Same: 1524.00 (89 edges)
  ACO MST_Deg3_Tuned: 1718.00 (89 edges)

Dataset 4:
  Kruskal MST: 1032.00 (89 edges)
  ACO TSP Path Same: 2491.00 (89 edges)
  ACO TSP Path Tuned: 2509.00 (89 edges)
  ACO MST Same: 1034.00 (89 edges)
  ACO MST Tuned: 1102.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2447.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2531.00 (89 edges)
  ACO MST_Deg3_Same: 1159.00 (89 edges)
  ACO MST_Deg3_Tuned: 1338.00 (89 edges)

Dataset 5:
  Kruskal MST: 1080.00 (89 edges)
  ACO TSP Path Same: 2192.00 (89 edges)
  ACO TSP Path Tuned: 2127.00 (89 edges)
  ACO MST Same: 1081.00 (89 edges)
  ACO MST Tuned: 1197.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2228.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2343.00 (89 edges)
  ACO MST_Deg3_Same: 1160.00 (89 edges)
  ACO MST_Deg3_Tuned: 1291.00 (89 edges)

Dataset 6:
  Kruskal MST: 1186.00 (89 edges)
  ACO TSP Path Same: 2450.00 (89 edges)
  ACO TSP Path Tuned: 2415.00 (89 edges)
  ACO MST Same: 1196.00 (89 edges)
  ACO MST Tuned: 1331.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2351.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2368.00 (89 edges)
  ACO MST_Deg3_Same: 1263.00 (89 edges)
  ACO MST_Deg3_Tuned: 1401.00 (89 edges)

Dataset 7:
  Kruskal MST: 1102.00 (89 edges)
  ACO TSP Path Same: 2412.00 (89 edges)
  ACO TSP Path Tuned: 2549.00 (89 edges)
  ACO MST Same: 1103.00 (89 edges)
  ACO MST Tuned: 1167.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2711.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2571.00 (89 edges)
  ACO MST_Deg3_Same: 1193.00 (89 edges)
  ACO MST_Deg3_Tuned: 1372.00 (89 edges)

Dataset 8:
  Kruskal MST: 1128.00 (89 edges)
  ACO TSP Path Same: 2883.00 (89 edges)
  ACO TSP Path Tuned: 2909.00 (89 edges)
  ACO MST Same: 1134.00 (89 edges)
  ACO MST Tuned: 1276.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2795.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2690.00 (89 edges)
  ACO MST_Deg3_Same: 1246.00 (89 edges)
  ACO MST_Deg3_Tuned: 1413.00 (89 edges)

Dataset 9:
  Kruskal MST: 1579.00 (89 edges)
  ACO TSP Path Same: 3239.00 (89 edges)
  ACO TSP Path Tuned: 3108.00 (89 edges)
  ACO MST Same: 1586.00 (89 edges)
  ACO MST Tuned: 1773.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 3367.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 3061.00 (89 edges)
  ACO MST_Deg3_Same: 1747.00 (89 edges)
  ACO MST_Deg3_Tuned: 1953.00 (89 edges)

Dataset 10:
  Kruskal MST: 1119.00 (89 edges)
  ACO TSP Path Same: 2333.00 (89 edges)
  ACO TSP Path Tuned: 2205.00 (89 edges)
  ACO MST Same: 1119.00 (89 edges)
  ACO MST Tuned: 1236.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2234.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2085.00 (89 edges)
  ACO MST_Deg3_Same: 1210.00 (89 edges)
  ACO MST_Deg3_Tuned: 1269.00 (89 edges)

Dataset 11:
  Kruskal MST: 1442.00 (89 edges)
  ACO TSP Path Same: 3018.00 (89 edges)
  ACO TSP Path Tuned: 2911.00 (89 edges)
  ACO MST Same: 1442.00 (89 edges)
  ACO MST Tuned: 1650.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2791.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2982.00 (89 edges)
  ACO MST_Deg3_Same: 1564.00 (89 edges)
  ACO MST_Deg3_Tuned: 1767.00 (89 edges)

Dataset 12:
  Kruskal MST: 1376.00 (89 edges)
  ACO TSP Path Same: 2787.00 (89 edges)
  ACO TSP Path Tuned: 2749.00 (89 edges)
  ACO MST Same: 1381.00 (89 edges)
  ACO MST Tuned: 1532.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2838.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2796.00 (89 edges)
  ACO MST_Deg3_Same: 1468.00 (89 edges)
  ACO MST_Deg3_Tuned: 1658.00 (89 edges)

Dataset 13:
  Kruskal MST: 1241.00 (89 edges)
  ACO TSP Path Same: 2496.00 (89 edges)
  ACO TSP Path Tuned: 2387.00 (89 edges)
  ACO MST Same: 1244.00 (89 edges)
  ACO MST Tuned: 1358.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2324.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2503.00 (89 edges)
  ACO MST_Deg3_Same: 1396.00 (89 edges)
  ACO MST_Deg3_Tuned: 1550.00 (89 edges)

Dataset 14:
  Kruskal MST: 1147.00 (89 edges)
  ACO TSP Path Same: 3001.00 (89 edges)
  ACO TSP Path Tuned: 2837.00 (89 edges)
  ACO MST Same: 1148.00 (89 edges)
  ACO MST Tuned: 1239.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2902.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2777.00 (89 edges)
  ACO MST_Deg3_Same: 1281.00 (89 edges)
  ACO MST_Deg3_Tuned: 1465.00 (89 edges)

Dataset 15:
  Kruskal MST: 1290.00 (89 edges)
  ACO TSP Path Same: 2901.00 (89 edges)
  ACO TSP Path Tuned: 2779.00 (89 edges)
  ACO MST Same: 1309.00 (89 edges)
  ACO MST Tuned: 1413.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2815.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2919.00 (89 edges)
  ACO MST_Deg3_Same: 1458.00 (89 edges)
  ACO MST_Deg3_Tuned: 1598.00 (89 edges)

Dataset 16:
  Kruskal MST: 982.00 (89 edges)
  ACO TSP Path Same: 2039.00 (89 edges)
  ACO TSP Path Tuned: 1963.00 (89 edges)
  ACO MST Same: 985.00 (89 edges)
  ACO MST Tuned: 1048.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2048.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 1885.00 (89 edges)
  ACO MST_Deg3_Same: 1098.00 (89 edges)
  ACO MST_Deg3_Tuned: 1238.00 (89 edges)

Dataset 17:
  Kruskal MST: 1331.00 (89 edges)
  ACO TSP Path Same: 2963.00 (89 edges)
  ACO TSP Path Tuned: 3138.00 (89 edges)
  ACO MST Same: 1343.00 (89 edges)
  ACO MST Tuned: 1424.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 3014.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 3189.00 (89 edges)
  ACO MST_Deg3_Same: 1475.00 (89 edges)
  ACO MST_Deg3_Tuned: 1686.00 (89 edges)

Dataset 18:
  Kruskal MST: 939.00 (89 edges)
  ACO TSP Path Same: 2022.00 (89 edges)
  ACO TSP Path Tuned: 2142.00 (89 edges)
  ACO MST Same: 939.00 (89 edges)
  ACO MST Tuned: 1024.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 1953.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2264.00 (89 edges)
  ACO MST_Deg3_Same: 1033.00 (89 edges)
  ACO MST_Deg3_Tuned: 1106.00 (89 edges)

Dataset 19:
  Kruskal MST: 1023.00 (89 edges)
  ACO TSP Path Same: 2466.00 (89 edges)
  ACO TSP Path Tuned: 2336.00 (89 edges)
  ACO MST Same: 1029.00 (89 edges)
  ACO MST Tuned: 1158.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2237.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2561.00 (89 edges)
  ACO MST_Deg3_Same: 1144.00 (89 edges)
  ACO MST_Deg3_Tuned: 1221.00 (89 edges)

Dataset 20:
  Kruskal MST: 1356.00 (89 edges)
  ACO TSP Path Same: 2750.00 (89 edges)
  ACO TSP Path Tuned: 2566.00 (89 edges)
  ACO MST Same: 1362.00 (89 edges)
  ACO MST Tuned: 1537.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2585.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2748.00 (89 edges)
  ACO MST_Deg3_Same: 1435.00 (89 edges)
  ACO MST_Deg3_Tuned: 1620.00 (89 edges)

Dataset 21:
  Kruskal MST: 1278.00 (89 edges)
  ACO TSP Path Same: 2415.00 (89 edges)
  ACO TSP Path Tuned: 2543.00 (89 edges)
  ACO MST Same: 1292.00 (89 edges)
  ACO MST Tuned: 1384.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2458.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2479.00 (89 edges)
  ACO MST_Deg3_Same: 1381.00 (89 edges)
  ACO MST_Deg3_Tuned: 1551.00 (89 edges)

Dataset 22:
  Kruskal MST: 1353.00 (89 edges)
  ACO TSP Path Same: 2140.00 (89 edges)
  ACO TSP Path Tuned: 2684.00 (89 edges)
  ACO MST Same: 1356.00 (89 edges)
  ACO MST Tuned: 1499.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2440.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2311.00 (89 edges)
  ACO MST_Deg3_Same: 1405.00 (89 edges)
  ACO MST_Deg3_Tuned: 1569.00 (89 edges)

Dataset 23:
  Kruskal MST: 1393.00 (89 edges)
  ACO TSP Path Same: 2965.00 (89 edges)
  ACO TSP Path Tuned: 2670.00 (89 edges)
  ACO MST Same: 1398.00 (89 edges)
  ACO MST Tuned: 1493.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2930.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2876.00 (89 edges)
  ACO MST_Deg3_Same: 1538.00 (89 edges)
  ACO MST_Deg3_Tuned: 1810.00 (89 edges)

Dataset 24:
  Kruskal MST: 1271.00 (89 edges)
  ACO TSP Path Same: 2680.00 (89 edges)
  ACO TSP Path Tuned: 2653.00 (89 edges)
  ACO MST Same: 1275.00 (89 edges)
  ACO MST Tuned: 1406.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2645.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2858.00 (89 edges)
  ACO MST_Deg3_Same: 1445.00 (89 edges)
  ACO MST_Deg3_Tuned: 1575.00 (89 edges)

Dataset 25:
  Kruskal MST: 1329.00 (89 edges)
  ACO TSP Path Same: 2601.00 (89 edges)
  ACO TSP Path Tuned: 2623.00 (89 edges)
  ACO MST Same: 1330.00 (89 edges)
  ACO MST Tuned: 1489.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2540.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2645.00 (89 edges)
  ACO MST_Deg3_Same: 1466.00 (89 edges)
  ACO MST_Deg3_Tuned: 1677.00 (89 edges)

Dataset 26:
  Kruskal MST: 1338.00 (89 edges)
  ACO TSP Path Same: 2603.00 (89 edges)
  ACO TSP Path Tuned: 2527.00 (89 edges)
  ACO MST Same: 1345.00 (89 edges)
  ACO MST Tuned: 1489.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2549.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2541.00 (89 edges)
  ACO MST_Deg3_Same: 1453.00 (89 edges)
  ACO MST_Deg3_Tuned: 1592.00 (89 edges)

Dataset 27:
  Kruskal MST: 1243.00 (89 edges)
  ACO TSP Path Same: 2883.00 (89 edges)
  ACO TSP Path Tuned: 2896.00 (89 edges)
  ACO MST Same: 1266.00 (89 edges)
  ACO MST Tuned: 1352.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2798.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2793.00 (89 edges)
  ACO MST_Deg3_Same: 1321.00 (89 edges)
  ACO MST_Deg3_Tuned: 1438.00 (89 edges)

Dataset 28:
  Kruskal MST: 1212.00 (89 edges)
  ACO TSP Path Same: 2432.00 (89 edges)
  ACO TSP Path Tuned: 2555.00 (89 edges)
  ACO MST Same: 1216.00 (89 edges)
  ACO MST Tuned: 1333.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2720.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2615.00 (89 edges)
  ACO MST_Deg3_Same: 1273.00 (89 edges)
  ACO MST_Deg3_Tuned: 1416.00 (89 edges)

Dataset 29:
  Kruskal MST: 1245.00 (89 edges)
  ACO TSP Path Same: 2921.00 (89 edges)
  ACO TSP Path Tuned: 2988.00 (89 edges)
  ACO MST Same: 1247.00 (89 edges)
  ACO MST Tuned: 1330.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 3004.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2896.00 (89 edges)
  ACO MST_Deg3_Same: 1383.00 (89 edges)
  ACO MST_Deg3_Tuned: 1584.00 (89 edges)

Dataset 30:
  Kruskal MST: 1402.00 (89 edges)
  ACO TSP Path Same: 2784.00 (89 edges)
  ACO TSP Path Tuned: 2848.00 (89 edges)
  ACO MST Same: 1403.00 (89 edges)
  ACO MST Tuned: 1614.00 (89 edges)
  ACO TSP_Path_Deg3_Same: 2854.00 (89 edges)
  ACO TSP_Path_Deg3_Tuned: 2842.00 (89 edges)
  ACO MST_Deg3_Same: 1523.00 (89 edges)
  ACO MST_Deg3_Tuned: 1786.00 (89 edges)

================================================================================
RESULTS TABLE
================================================================================
Dataset  Kruskal  ACO_TSP_Path_Same  ACO_TSP_Path_Tuned  ACO_MST_Same  ACO_MST_Tuned  ACO_TSP_Path_Deg3_Same  ACO_TSP_Path_Deg3_Tuned  ACO_MST_Deg3_Same  ACO_MST_Deg3_Tuned
     D1   1402.0             2897.0              2836.0        1413.0         1563.0                  2635.0                   2927.0             1547.0              1711.0
     D2   1224.0             2433.0              2501.0        1226.0         1341.0                  2506.0                   2494.0             1345.0              1451.0
     D3   1397.0             2727.0              2691.0        1405.0         1627.0                  2715.0                   2789.0             1524.0              1718.0
     D4   1032.0             2491.0              2509.0        1034.0         1102.0                  2447.0                   2531.0             1159.0              1338.0
     D5   1080.0             2192.0              2127.0        1081.0         1197.0                  2228.0                   2343.0             1160.0              1291.0
     D6   1186.0             2450.0              2415.0        1196.0         1331.0                  2351.0                   2368.0             1263.0              1401.0
     D7   1102.0             2412.0              2549.0        1103.0         1167.0                  2711.0                   2571.0             1193.0              1372.0
     D8   1128.0             2883.0              2909.0        1134.0         1276.0                  2795.0                   2690.0             1246.0              1413.0
     D9   1579.0             3239.0              3108.0        1586.0         1773.0                  3367.0                   3061.0             1747.0              1953.0
    D10   1119.0             2333.0              2205.0        1119.0         1236.0                  2234.0                   2085.0             1210.0              1269.0
    D11   1442.0             3018.0              2911.0        1442.0         1650.0                  2791.0                   2982.0             1564.0              1767.0
    D12   1376.0             2787.0              2749.0        1381.0         1532.0                  2838.0                   2796.0             1468.0              1658.0
    D13   1241.0             2496.0              2387.0        1244.0         1358.0                  2324.0                   2503.0             1396.0              1550.0
    D14   1147.0             3001.0              2837.0        1148.0         1239.0                  2902.0                   2777.0             1281.0              1465.0
    D15   1290.0             2901.0              2779.0        1309.0         1413.0                  2815.0                   2919.0             1458.0              1598.0
    D16    982.0             2039.0              1963.0         985.0         1048.0                  2048.0                   1885.0             1098.0              1238.0
    D17   1331.0             2963.0              3138.0        1343.0         1424.0                  3014.0                   3189.0             1475.0              1686.0
    D18    939.0             2022.0              2142.0         939.0         1024.0                  1953.0                   2264.0             1033.0              1106.0
    D19   1023.0             2466.0              2336.0        1029.0         1158.0                  2237.0                   2561.0             1144.0              1221.0
    D20   1356.0             2750.0              2566.0        1362.0         1537.0                  2585.0                   2748.0             1435.0              1620.0
    D21   1278.0             2415.0              2543.0        1292.0         1384.0                  2458.0                   2479.0             1381.0              1551.0
    D22   1353.0             2140.0              2684.0        1356.0         1499.0                  2440.0                   2311.0             1405.0              1569.0
    D23   1393.0             2965.0              2670.0        1398.0         1493.0                  2930.0                   2876.0             1538.0              1810.0
    D24   1271.0             2680.0              2653.0        1275.0         1406.0                  2645.0                   2858.0             1445.0              1575.0
    D25   1329.0             2601.0              2623.0        1330.0         1489.0                  2540.0                   2645.0             1466.0              1677.0
    D26   1338.0             2603.0              2527.0        1345.0         1489.0                  2549.0                   2541.0             1453.0              1592.0
    D27   1243.0             2883.0              2896.0        1266.0         1352.0                  2798.0                   2793.0             1321.0              1438.0
    D28   1212.0             2432.0              2555.0        1216.0         1333.0                  2720.0                   2615.0             1273.0              1416.0
    D29   1245.0             2921.0              2988.0        1247.0         1330.0                  3004.0                   2896.0             1383.0              1584.0
    D30   1402.0             2784.0              2848.0        1403.0         1614.0                  2854.0                   2842.0             1523.0              1786.0

================================================================================
SUMMARY STATISTICS
================================================================================
              Algorithm        Mean        Std    Min    Max
                Kruskal 1248.000000 148.522726  939.0 1579.0
      ACO_TSP_Path_Same 2630.800000 306.771728 2022.0 3239.0
     ACO_TSP_Path_Tuned 2621.500000 282.383162 1963.0 3138.0
           ACO_MST_Same 1253.566667 149.972594  939.0 1586.0
          ACO_MST_Tuned 1379.500000 180.967354 1024.0 1773.0
 ACO_TSP_Path_Deg3_Same 2614.466667 305.016473 1953.0 3367.0
ACO_TSP_Path_Deg3_Tuned 2644.633333 286.170751 1885.0 3189.0
      ACO_MST_Deg3_Same 1364.466667 160.561875 1033.0 1747.0
     ACO_MST_Deg3_Tuned 1527.466667 195.191655 1106.0 1953.0

================================================================================
βœ… FAIR COMPARISON ANALYSIS (n-1 edges)
================================================================================

Edge Count: n-1 = 89 edges

1. Kruskal (Optimal): 1248.00
2. ACO TSP Path:      2630.80
3. ACO MST:           1253.57

Gap from Optimal:
  TSP Path vs Kruskal: +110.80%
  MST vs Kruskal:      +0.45%

βœ… Fair comparison karena:
  β€’ Same edge count: 89 edges
  β€’ No cycle: TSP Path & MST both are paths/trees
  β€’ Apple-to-apple: Both connect all nodes without cycle

================================================================================
VISUALIZING FIRST DATASET RESULTS
================================================================================

1. Visualizing Complete Graph...
No description has been provided for this image
2. Visualizing Kruskal MST...
No description has been provided for this image
3. Visualizing ACO TSP Path...
No description has been provided for this image
4. Visualizing ACO MST...
No description has been provided for this image
5. Creating comparison plots...
C:\Users\PST\AppData\Local\Temp\ipykernel_37204\2533084406.py:554: MatplotlibDeprecationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels' since Matplotlib 3.9; support for the old name will be dropped in 3.11.
  ax1.boxplot(fair_data, labels=['Kruskal\n(Optimal)', 'TSP Path\n(Same)', 'MST\n(Same)'])
C:\Users\PST\AppData\Local\Temp\ipykernel_37204\2533084406.py:566: MatplotlibDeprecationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels' since Matplotlib 3.9; support for the old name will be dropped in 3.11.
  ax2.boxplot(deg_data, labels=['TSP Path\nDeg3', 'MST\nDeg3'])
C:\Users\PST\AppData\Local\Temp\ipykernel_37204\2533084406.py:601: UserWarning: Glyph 9989 (\N{WHITE HEAVY CHECK MARK}) missing from font(s) DejaVu Sans.
  plt.tight_layout()
C:\Users\PST\AppData\Local\Temp\ipykernel_37204\2533084406.py:602: UserWarning: Glyph 9989 (\N{WHITE HEAVY CHECK MARK}) missing from font(s) DejaVu Sans.
  plt.savefig(f'{folder_name}/fair_comparison.png', dpi=300, bbox_inches='tight')
C:\Users\PST\anaconda3\Lib\site-packages\IPython\core\pylabtools.py:170: UserWarning: Glyph 9989 (\N{WHITE HEAVY CHECK MARK}) missing from font(s) DejaVu Sans.
  fig.canvas.print_figure(bytes_io, **kw)
No description has been provided for this image
================================================================================
βœ… COMPLETED!
================================================================================

Files saved to 'results/' folder:
  πŸ“Š fair_aco_results.csv - Numerical results
  πŸ“ˆ fair_comparison.png - Comparison plots
  🌐 complete_graph.png - Full graph visualization
  🌳 kruskal_mst.png - Kruskal MST result
  πŸ›€οΈ  aco_tsp_path.png - ACO TSP Path result
  🌲 aco_mst.png - ACO MST result

πŸ’‘ KEY FINDINGS:
  β€’ All methods use n-1 = 89 edges (FAIR!)
  β€’ TSP Path: NO cycle (like MST)
  β€’ Kruskal: 1248.00 (optimal)
  β€’ ACO TSP Path: 2630.80 (+110.80%)
  β€’ ACO MST: 1253.57 (+0.45%)
InΒ [Β ]: